Human umbilical cord blood-derived CD34+ cells can be used as a prophylactic agent for experimental heatstroke.

نویسندگان

  • Wei-Shou Hwang
  • Sheng-Hsien Chen
  • Cheng-Hsien Lin
  • Hsiu-Kang Chang
  • Wei-Chun Chen
  • Mao-Tsun Lin
چکیده

We attempted to assess the prophylactic effect of human umbilical cord blood-derived CD34(+) cells in experimental heatstroke. Anesthetized rats, 1 day before heat stress, were divided into 2 major groups and given CD34(-) cells (defined by 1 x 10(6) human cord blood lymphocytes and monocytes that contained <0.2% CD34(+) cells) or CD34(+) cells (defined by 1 x 10(6) human cord blood lymphocytes and monocytes that contained >95% CD34(+) cells). They were exposed to ambient temperature of 43 degrees C for 70 min to induce heatstroke. When the CD34(-) cells-treated or untreated rats underwent heat stress, their survival time values were found to be 20-24 min. Pretreatment with CD34(+) cells significantly increased survival time (123-351 min). As compared with normothermic controls, all CD34(-) cells-treated heatstroke animals displayed hypotension, hepatic and renal failure, hypercoagulable state, activated inflammation, and cerebral ischemia and injury. However, these heatstroke reactions all were significantly suppressed by CD34(+) cells pretreatment. In addition, the levels of interleukin-10 in plasma and glial cell line-derived neurotrophic factors in brain were all significantly increased after CD34(+) cell administration during heatstroke. Our data indicate that human umbilical cord-derived CD34(+) cells can be used as a prophylactic agent for experimental heatstroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour) and then returned to room temperature (26°C)...

متن کامل

Mesenchymal stem cells as a reference cell for HLA-typing

Introduction: Recognition of human leukocyte antigens (HLA) is of importance for hematopoietic stem cell transplantation. Any HLA-mismatches between the donor and recipient can cause graft rejection or other complications. In HLA-typing experiments, usage of HLA-known reference cells accompany with HLA-unknown samples is obligatory. Some international centers represent these cells with high e...

متن کامل

Mesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood

Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34+ cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apo...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmacological sciences

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2008